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The influence of the time form of a surface heat source on the distribution of the temperature field in a ho-
mogeneous half-space is investigated.

Introduction. The intensity of laser radiation is either constant (continuous operation) or a function of time
(pulsed operation) [1]. Most gas lasers, in particular, CO2 and He–Ne ones, can operate in both continuous and pulsed
lasing regimes. Solid-state lasers (ruby, neodymium glass, and Nd:YAG ones) are used in a pulsed regime, although
the latter can operate continuously, too. The function describing the time variation in the specific laser-radiation power
is called the time form (structure) of a laser beam. The time structure of a pulse of modern lasers can vary with op-
erating conditions (e.g., ruby and neodymium lasers).

We have a millisecond (normal) lasing regime when the laser is pumped using a flash lamp. The pulse dura-
tion typical of this operating regime of the laser takes on values in the interval 0.1–1 msec. Usually, such a pulse con-
sists, in turn, of a series of randomly occurring flashes with a duration of about a few microseconds. The amplitude
and time intervals between them are different. Ruby and neodymium glass lasers frequently operate in such a regime.
In a millisecond regime of laser operation, we can also have the generation of a quasistationary pulse, when mi-
croflashes are absent. A typical oscillogram of variation in the specific power of a neodymium glass laser operating in
a millisecond regime is shown in Fig. 1 [2].

Heat-Conduction Problem. The depth of penetration of laser light into the irradiated material is much
smaller than the thickness of a layer heated by heat conduction. It is well known that if the thickness of the heated
layer is much smaller than the radius of the laser beam, the process of heating of a body can be modeled using a sur-
face heat source [1]. In selecting laser-radiation parameters necessary for forming the temperature field of a certain (for
this depth) level in a material with prescribed thermophysical properties, one uses, as a rule, the solution of a one-di-
mensional (in space coordinate) linear heat-conduction equation for a semiinfinite body z ≥ 0 [3]:
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In numerical calculations of laser heating, one usually considers either the rectangular

I (t) = H (ts − t) ,   t > 0 , (2)

or triangular

I (t) = 




2t ⁄ tr ,   0 < t ≤ tr ;

2 (ts − t) ⁄ (ts − tr) ;   tr ≤ t ≤ ts ,

(3)

structures of a laser pulse, selecting their parameters for comparative analysis so that the duration and energy are equal
in both cases.
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Passing to dimensionless quantities and parameters
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after the substitution of the functions of I (2) and (3) into the solution (1) and the integration, we obtain

T (ζ, τ) = AΛT
∗
 (ζ, τ) ,   ζ ≥ 0 ,   τ ≥ 0 , (5)

where we have
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for the rectangular form of the pulse (2) and
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for the triangular form (3).
It is noteworthy that T(0)∗ and T(1)∗ are the known solutions obtained from formula (1) for a constant I(τ) =

1 and a linear I(τ) = τ, τ > 0, of the specific power of the surface heat source [3].
An approximation of the oscillogram presented in Fig. 1, which is more accurate than those rectangular and

triangular, can be obtained using the function [4]

I (τ) = I
∗
 exp − β τ

γ
 − τr

γ


 

τ

 ⁄ τr



α
 ,   τ > 0 , (10)

where the parameters α, β, and γ are related to the rise time

τr = [α ⁄ (βγ)]
1 ⁄ γ . (11)

The dimensionless factor I∗ in formula (10) is selected from the condition of equality of the total energy for the dis-
tributions (2), (3), and (10):

Fig. 1. Oscillogram of the radiation-intensity distribution of a laser operating
in the quasistationary regime of radiation (from the data of [2]).
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 ∫ 
0

∞

I (τ) dτ = τs .
(12)

In particular, when α = 0.4, β = 7, and γ = 3 we find τr = 0.267 from equality (11) and relation (12) yields I∗ =
2.019τs. The plot of the function I(τ) (10) constructed for τs = 1 is presented in Fig. 2 by a solid curve. The rectan-
gular (2) (dashed curve) and triangular (3) (dot-dash curve) distributions of the heat-flux intensity are also shown in
this figure.

We failed to accurately integrate the solution (1) for the function I(τ) (10) and (11). Therefore, we perform
integration, approximating the function I(τ) (10) using finite piecewise-continuous or piecewise-linear functions. Such
an approach turned out to be efficient earlier in investigating a two-dimensional quasistationary heat-conduction prob-
lem for a half-space heated by a rapidly moving distributed linear heat flux (Ling thermal friction problem) [5, 6].

In the case of the piecewise-continuous approximation, we have

I (τ) C  ∑ 

k=1

n

 I (τ
_

k) ϕk (τ),   τ > 0 , (13)

ϕk (τ) = 




1 ,   τ ∈ [τk−1, τk] ,

0 ,   τ ∉ [τk−1, τk] ,   k = 1, 2, ..., n ,
(14)

where τk = kδτ and τ
_

k = 0.5 (τk−1 + τk), k = 0, 1, ..., n; δτ = τ ⁄ n are the nodes of the grid of uniform partition of
the time interval [0, τ].

Substituting the approximation of the I(τ) function (13) and (14) into the solution (10) and integrating, we ob-
tain the solution in the form (5), where
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here T(0)∗(ζ, τ) is the dimensionless temperature (7).
Approximating the time structure I(τ) (10) by the piecewise-linear functions

I (τ) C  ∑ 

k=0

n

 I (τk) ϕk (τ),   τ > 0 , (17)

Fig. 2. Different forms of the time structure of a laser pulse.
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from the solution (1) we obtain the temperature in the form (5)
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where T(1)∗(ζ, τ) is the dimensionless temperature (9).
The absolute error of approximations (13) and (14) is O(δτ) and O(δτ2) respectively [7].
Numerical Analysis. The evolution of the dimensionless temperature T∗ = T ⁄ Λ on the irradiated surface ζ =

0 for the rectangular (2), triangular (3), and accurate (10), (11) forms of the time distribution of the specific power of
the heat source is shown in Fig. 3. Here and in Figs. 4 and 5, the solid curves correspond to the nearly triangular
distribution of radiation intensity (10) and (11), the dot-dash curves correspond to the triangular distribution (3), and
the dashed curves correspond to the rectangular one (2).

For the rectangular pulse, the maximum value Tmax
∗  = 1.1284 is attained at the instant of switching the source

off τs = 1, whereas for the triangular pulse of the same duration with a rise time τr = 0.2671, the maximum value is

Fig. 3. Evolution of the dimensionless temperature T∗ on the half-space sur-
face: τs = 1 and τr = 0.267.

Fig. 4. Distribution of the dimensionless temperature T∗ in depth from the
half-space surface. τ = τs = 1 and τr = 0.267.

Fig. 5. Change in the dimensionless time τmax of attainment of the maximum
value by the temperature with distance from the half-space surface. τs = 1 and
τr = 0.267.
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Tmax
∗  = 1.1429 at τ = 0.58. We have an even larger shift of the time of attainment of the maximum temperature from

the instant of switching the source off for the distribution of the heat flux intensity in the form (10) and (11) (with
the same rise time), when Tmax

∗  = 1.2824 at τ = 0.46.
The variation in the temperature with depth from the heating surface is shown in Fig. 4. The interior of the

body is cooled most rapidly for the rectangular form of a pulse, and the cooling is the slowest for the intensity dis-
tribution (10). The temperature becomes negligibly low at a distance of about three radii of the heat source for all
three time structures.

The effect of delay is also noteworthy: the time τmax of attainment of the maximum temperature grows with
distance from the working surface [8]. For the rectangular pulse we have τmax = τs + ∆τ. The delay time on the body’s
surface ζ = 0 is ∆τ = 0 and it increases with distance from the surface. For the triangular (3) and nearly triangular
(10) time forms of a laser pulse, we have a delay from the rise time, i.e., τmax = τr + ∆τ. For a fixed depth ζ, the
time of attainment of the temperature maximum is the longest for the rectangular pulse and the shortest for the time
distribution of the specific radiation power (10) (Fig. 5). For example, at the depth ζ = 1, we have τmax = 1.26 for
the rectangular pulse, τmax = 1.15 for the triangular pulse, and τmax = 0.97 for the pulse described by formulas (10)
and (11).

Influence of the Time Form of a Laser Pulse on the Thickness of a Thermally Hardened Layer. Pulsed
laser treatment gives rise to a hardened layer of small (about 0.1 mm) thickness near the irradiated surface [9]. Apart
from the power and duration of a laser pulse, a substantial influence on the thickness of the hardened layer is exerted
by its evolution with time. Since, mathematically, the form is most simply varied using the ratio τr

 ⁄ τs, we compara-
tively investigate the corresponding parameters for the rectangular (2) and triangular (3) forms of a laser pulse.

According to the solution (6) and (7), at the instant of switching off τ = τs, the dimensionless temperature at
the distance ζ from the body’s surface is equal to

T0
∗
 (ζ, τs) = 2 √τs ierfc (0.5ζ √τs ) ,   ζ > 0 (19)

for the rectangular pulse (2) and, based on the solution (8) and (9), to
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T
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τs − τr
 T
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 ,   ζ > 0 (20)

for the triangular pulse (3).
On the surface irradiated, from formulas (19) and (20) for ζ = 0 we obtain

T0
∗
 (ζ, τs) = 2 √τs  ,   T1

(1)
 (0, τs) = 8 √τs

 ⁄ [3 √π  (1 + √1 − τr
 ⁄ τs)] . (21)

Let us assume that the parameters of a laser unit are such that at the instant of switching the unit off, the temperature
on the surface of the irradiated body is the same and equal to T0 for the rectangular and triangular pulse forms, i.e.,
we have

AΛ0T0
∗
 (0, τs) = AΛ1T1

∗
 (0, τs) = T0 . (22)

For the same absorption coefficients A and beam radius a, from equality (22) we find the ratio of the specific powers
of the rectangular and triangular heat sources

q
∗
 = 

q1

q0

 = 
T0
∗
 (0, τs)

T1
∗
 (0, τs)

 , (23)

where the dimensionless temperatures T0
∗ and T1

∗ are determined from formulas (21). The dependence of q∗ (23) on the
ratios τr

 ⁄ τs is shown in Fig. 6. It is seen that the intensity of the triangular pulse with a maximum close to the instant
of switching the laser off and zero at the instant of switching it on (τr

 ⁄ τs = 0), which is necessary for attainment of
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a prescribed temperature on the body’s surface, is half again the specific power of the beam of the rectangular form.
As the ratio τr

 ⁄ τs grows, the quantity q∗ decreases, attaining a value of 0.75 for the pulse with zero at the leading
edge and a maximum at the trailing edge (τr

 ⁄ τs = 1). This is confirmed by the conclusion of [10] that, in solving
technical problems associated with the melting and evaporation of a material, the action by triangular pulses with a
low-angle leading edge and a steep trailing edge is the most efficient from the viewpoint of the minimum energy con-
sumption.

Knowing the temperature of laser hardening Th with the condition (20) of equality of the surface temperatures
of the rectangular and triangular pulses, from relations (5), (19), and (20) we obtain the equations to determine the di-
mensionless thickness ζh of the hardened layer

Tk
∗
 (ζ(h)

(0)
, τk) = (Th

 ⁄ T0) Tk
∗
 (0, τ1) ,

Tk
∗
 (ζh

(1)
, τk) = (Th

 ⁄ T0) Tk
∗
 (0, τ1) .

(24)

The dependence of the ratio ζh
∗ = ζh

(1)/ζh
(0) on the ratio τr

 ⁄ τs is shown in Fig. 7. It is seen that, on condition that a
constant temperature is maintained on the surface irradiated, for the largest thickness of the hardened layer to be pro-
duced one must carry out the treatment by triangular pulses with an intensity maximum falling nearly at the middle of
the pulse duration (in the case in question, the rise time is τr = 0.43τs). Thus, the time form of a pulse that can be
approximated by an isosceles triangle is optimum from the viewpoint of production of the largest hardened-layer thick-
ness without changing the state of the surface.

Conclusions. Using the approximating properties of finite functions we have considered the approximate solu-
tion of a one-dimensional nonstationary heat-conduction problem for a semiinfinite body with an arbitrary (integrable)
distribution of the heat-flux intensity on the boundary surface. The numerical calculations have been carried out for the
same form (occurring in pulsed laser treatment of materials) of the specific power of a surface heat source. A com-
parative analysis of the temperature distribution for pulses of rectangular, triangular, and "nearly triangular" time struc-
tures with the same power has been presented. Also, we have investigated the influence of different time forms of a
laser pulse on the hardened-layer thickness.

This work was carried out within the framework of the scientific project W/WM/1/04 financed by the
Politechnika Bialostocka with the funds allocated for its own research.

Fig. 6. Ratio q∗ = q1
 ⁄ q0 of the specific powers of the heat sources of triangu-

lar and rectangular time forms vs. dimensionless rise time τr
 ⁄ τs.

Fig. 7. Ratio ζh
∗ = ζh

(1)/ζh
(0) of the dimensionless hardened-layer thicknesses

formed in heating of the body by the sources of triangular and rectangular time
forms vs. dimensionless rise time τr

 ⁄ τs at Th
 ⁄ T0 = 0.666.
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NOTATION

A, absorption coefficient; a, radius of the laser beam; erfc(⋅) = 1 − erf(⋅); erf(⋅), error function; H(⋅), Heaviside
unit function; K and k, thermal conductivity and thermal diffusivity respectively; q = Aq0I, radiation intensity; q0, char-
acteristic value of q; I, time structure of a pulse; T, temperature; T∗ = T ⁄ Λ, dimensionless temperature; Th, temperature
of thermal hardening of steel; t, time; ts, duration of heating; tr, rise time; ∆t, delay time; z, space coordinate (distance
from the surface of a semiinfinite body); zh, hardened-layer thickness; ζ = z/a, dimensionless coordinate; ζh = zh

 ⁄ a,
dimensionless hardened-layer thickness; τ = kt/a2, τr = ktr ⁄ a

2, τs = kts ⁄ a
2, and ∆τ = k∆t ⁄ a2, Fourier numbers; τmax =

τs + ∆τ, dimensionless time of attainment of the maximum temperature; δτ, dimensionless step of partition of the time
interval; Λ = Aq0a ⁄ K, factor having the dimension of temperature. Subscripts: (0) and (1), rectangular and triangular
forms of a pulse; s, switching off; r, rise; h, hardening; max, maximum quantities; *, dimensionless quantities.
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